AD=AOB2 641

UNCLASSIF1ED

NORTHROP CORP DES PLAINES IL DEFENSE SYSTEMS DIV

PARAMETRIC OSCILLATIONS IN HIGH POWER MICROWAVE ANPLIFIERS,(U)
FU9680=7T=C=0096
APOSA=TR=80-0228 o

F70 /3




1.0 &M= 12
=L &2 22
= m

L =" b=
= i8

Iz

et e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

_




PARAMETRIC OSCILLATIONS

IN HIGH POWER

MICROWAVE AMPLIFIERS

Defeme Systems Division

forwbuo velense !
buuon unlimited.

80 3 20 091




|

AP MO 110 1 £kl 18 0 7 = a2y Ao i o e

)
¥

PARAMETRIC OSCILLATIONS
IN HIGH POWER MICROWAVE AMPLIFIERS

Contract No. F49620-77-C-0096

Final Report

July 1977 to June 1979

Prepared by: Dr. Gunter Dohler

pas poest el pemm  pens O mmey S JEme O WEE EEW O ER D BB o

Northrop Corporation
Defense Systems Division
Electron Tube Section
175 W. Oakton Street

Des Plaines, IL 60018

AIR PORCE OFFICE oF SCIENTIPIC Rﬁéauf

ey eaay  gem g eEs

:::xcs OF TNIMSMITIAL T DDe il (4xsa) i
.ppzozzgh?:;n. ; _-:u i:. L2 reviewad gnd ig i
Dlstriml.oulv r"‘ L -I ..4 Saa@ Lo P YUNY J.‘J'\)‘lz (7b)o

ol Ly ualimiteq
A D. Biusi '
Techuiecal Information Officer

PO L R R S

T




AERER—. ’
APRREP IS SR s v
e
) TABLE OF CONTENTS
| SECTION PAGE
, 4? 1.0 INTRODUCTION . . &« v ¢ ¢ v o v e e v o o e o v e o e e e u 1
2.0 THE BASIC MODEL . . . & v v & & o e e e e e e e e e e e s 7
l 3.0 THE CFADELAY LINE . . . . . & & ¢ v e e e e v e e e e v e 9
3.1 The Physical Model . . . . . . . . e e e e e e e e e e e e 9
I 3.2 The Mathematical Model . . . . . . . . . . . . ... .. .. 12
3.2.1 Mathematical Solution in a Dielectric Section . . . . . . . 12
3.2.2 Physical Interpretation and Simplification . . . . . . . . . 14
3.2.2.1 Injectionof a Single Wave . . . . . . . . . . ¢ ¢ e« .« .. 14
l 3.2.2.2 Injection of Two Waves: Active and Passive Coupling . . . . 14
3.2.2.3 Presence of Three Waves and Boundary Conditions . . . . . . 15
3.3 Computer Results . . . . C e e e e b e et e e e e e 16
' 3.3.1 Results Obtained with CFA Lines . . . . . . ... ..... 16
3.4 Expertmental Verification . ... ... ... ... .... 21
3.5 Reduced Width of Bandgap (Stopband) ............ 21
l 3.6 Conclusion and Discussion (CFA) . . . . . .. ... .. .. 24
4.0 THE MODEL OF THE O-TYPE TRAVELING WAVE TuBE . . . . . . . . 28
l 4.1 The Physical Model . . . . . . . . R 28
4.2 The Mathematical Model . . . . . . . . ¢ ¢ ¢« ¢ v v o ¢ v o . 30
4.2.1 Maxwell's Equattons e e e e e e e e e e e e e e 30
l 4.2.2 Active CoupTing . . « ¢ ¢« v ¢ ¢ v ¢ v 0 0 0 00 a 33
4.2.3 Passive Coupling . . . . v ¢ ¢ ¢ ¢ v v v v v e b e e e e 34
4,2.4 Relationship to Normal Modes . . . . . . . . . . . . . ... 35
, 4,2.5 Parametric Ampitfication . . . . . . . . . . . ... ... 35
; l 4.2.6 Frequency Conversion . . . . « ¢ ¢« ¢ ¢ ¢ ¢ v o v o o o v o . 38
- 4.2.7 Boundary Conditions . . . . . . . ¢ v ¢« ¢ v ¢ v 0 v v 0. 40
' 4.2.8 CoNCTUSTON . . & & & ¢ v i i e d e et e e e e e e e e e 40
l 4.3 Three Waves . . . . . v v v v e v e e e e e e e e e 4
‘ 4.3.1 Basic Relatfons . . . ... ... ......... . 4]
- 4.3.2 The Dispersion Equation . . . . . .. ... ... ... .. 42
x 4.3.3 The General Solution . . . . . . « . ¢ ¢ ¢ v ¢ v v e v o v ™ 46
Ll 4.3.4 Concluston . . . . . . . ¢ v v v i i v vttt e 46
l 5.0 PARAMETRIC TMT AMPLIFICATION . . . . . v v o v v o v v . . . a8
5.1 General .. ... . Gt e e e e e e s e e e e ... 48
a 5.2 The Tnnsfomtion Hatrices . &t e s s e s e e e ... 89
I 5.2.1 Transformation Through a Single Eupty
1 Maveguide Sectfon of Length £, . . . . . . . ........ 49
5.2.2 Interface Boundary Condition . . . . . . . . . . .. . ... 49
, 5.2.3 Transformation Through the Dielectric Section . . .. . . . 53
I 5.2.4 The Transformation Through a Complete Single -Section . . . . 53
5.2.5 The Complete Transformatfon Matrdx . . . . . . . . . . . . . 55
5.3 The Unperturbded Matrdces . . . . . . . . . . ¢ . ¢ ... 55
I 5.4 General Method of Solution . . . « « « v v o o o v o v ... 58
5.5 Results and Discussfon . . . . . . . ¢ ¢ ¢ v ¢ v v o v oo 59

A




TABLE OF CONTENTS (CON'T)

SECTION PAGE
l 6.0 CONCLUSIONS AND FUTURE WORK . . « « v ¢ v & v v v v o v o . 61
l APPENDIX I: The Dispersion Equation . . . . . ... .. .. 62
l APPENDIX II: Eigenvalues of ToS, « ¢+ v v v v v o v oo 65
l APPENDIX III: Non-Synchroneous Case . . . . .. .. ... 72
Accession For
r NTIS @ikl
DOC TAB

tnomneuaced
Juntiricition__ ]

i By

|-igtribeticn/

- Aypiinbitity Codes |
Availand/or
] Dist special

| | 1




AEER OEE) SENY N o) SN e gENEN  peunl  panel AN O pER DD BN UIED WY epm

NUMBER

~N o0 B wN

10
n

12
13
14

15
16

17

18

LIST OF FIGURES

Spurious signals in IBCFA . . . . . . . ¢« ¢ v ¢ ¢ v ¢ ¢« o o
Spurious oscillations in Ku-band TWT . . . . .. ... ...
Output power sSpectrum . . . . « v ¢ ¢ ¢ ¢ ¢ o o v o e 0 o o
Schematic of the interaction space inCFA's . . . . . . . ..
IBCFA model analyzed . . . . . . ¢« ¢ ¢ v ¢ e v ¢ ¢ 0 o s o
Schematic of boundary conditions . ... ... .. .. ...

Total output power P, versus frequency f, = fp - f,

(fp close to or 1n bandgap) . . . . . . . . .. .. 0. ..

Power gain versus frequency for all three waves when

fp ts close to or in ftrst bandgap . . .. ... ... ...
Spectrum of reflected power . . . . . . e b e s s e e e e e s
OQutput power and reflected spectrum . . . . . . . . . . . ..

Removal of material of meander line to reduce excess

CAPACTILANCE « . & & & ¢ ¢ ¢ ¢ ¢ e bt ekt e e e e e e

Reduction of width of stop-band by reduced capacitance

Schematic of TWT interactton space . . . .. .. ... ...

Phystcal model of the helix structure in 0-type traveling
".ve tubes L] L] L ] L] L] L] . L] * L] * L ] L] L] [ ] L] L) . L) [ ]

Single waveguide section . . . . . ... ... ... .. ..

The transformation matrix (L,) which can be represented

by the product (L1) = (Lao){($2) « +. « v v ¢ ¢« v v v v v v v .

The 4x4 boundary transformation matrix (Bg) decouposed

Into 2x2 MALPrICES . . . ¢ ¢ . . b e e e e e s e e e e e e e

The 4x4 transmission matrix (L,) = (Lz.)(s,) (L,,)

through the dielectric . . . . .. .. . e s e e e e e

LA

1=

PAGE

10
11
17

19

20
22
23

25
26
29

31
50

51

52

54




P —— s

IAREE—— .

e

1.0 INTRODUCTION

High power microwave amplifier tubes, including injected beam crossed
field amplifiers (IBCFA's) and broad band traveling wave tubes (TWT's) may
exhidbit several types of spurious signals in their output power spectrum.
This paper describes one class of spurious signals, called parametric oscil-
lations, for which a mathematical model is proposed.

By charting the frequency fgp of the parametric signals as a function
of drive frequency f4, an empirical relationship is obtained:

fsp = Illfo - nfd

where n and m are positive or negative integers. f, is a fixed frequency
which is correlated empirically to a 1imit frequency in the stopband of the
slow-wave structure. Figures 1 and 2 show typical measured data obtained
from an S-band IBCFA and a Ku-band TWT.

Relation (1) seems to indicate that the origin of these oscillations
is due to intermodulation products between two signals in the amplifier.
Assuming that the spurious signals are intermodulation products between the
signal frequency and an oscillation inherent in the tube at the frequency fo,
then one would expect to find a coherent oscillation in the absence of the
injected signal: (drive). Such is not the case. In fact, high drive power
levels are required for these oscillations to occur. Figure 3 illustrates
this behavior. Here, the amplifier is driven at a frequency of 3.9GHz, and the
Tower edge of the circuit stopband is known to occur at 7.8GHz. The upper
right picture of the spectrum analyzer display (Figure 3) shows a normal clean
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output power spectrum from the amplifier driven close to (or just into)
saturation (drive power level 32KW). The output power is measured to be
1.6kW.

The photograph in the upper left hand corner of Figure 3 shows the
spectrum containing the spurious signals when the amplifier is driven into
hard saturation (drive power level = 45W). The photograph in the lower
Teft corner of Figure 3 shows the output spectrum appearing under these same
conditions at the harmonic frequency of 7.8GHz. The output power dropped
from 1.6 to 1kW at the signal frequency, resulting in a "power-suckout"
frequently observed in TWT's and CFA‘s.

Since the spurious signals are only observed under full beam power con-
ditions and with the presence of a drive signal, preferably at high power,
it is believed that the amplifier is pumped by a signal related to the drive
signal, similar to a parametric amplifier. Hence, we have coined the term
"parametric oscillations” to describe these spurious signals.

A model which describes parametric oscillations must be based on the
existence of a) a full power electron beam, b) a strong RF drive signal, and
c) a periodic structure.

A model, fulfilling these three requirements, was proposed to the Air
Force Office of Scientific Research for further evaluation, and sponsored
by the agency from July 1977 to June 1979. The first phase of the study
program applied the model to injected beam crossed field amplifiers., The
model predicted the simultaneous existance of very low frequency oscillations,
which have been detected experimentally. These results, which have been
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discussed in detail in an interim report submitted to AFOSR]), in pub-

in this report.
The second phase of the program applied the model to helix type traveling

| lication?) and at the IEDM meeting in Washington, 19783), will be summarized
l wave tubes. The results obtained will also be presented in this final report.

. A Araaamy s

1 G. Dohler, Parametric Oscillations in High Power Microwave Amplifiers,
Contract No. F49620-77-C-0096 (1979).

2) ?&ozm?;%i 6. Dohler, IEEE Transactions on Electron Devices, ED 26(10),

3) 0. Doehler, G. Dohler, International Electron Devices Meeting, §
Washington, D.C. (Dec. 1978).
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2.0 THE BASIC MODEL

The delayed electromagnetic wave in a slow wave microwave amplifier
propagates in a space with an effective dielectric constant € which is
determined by the geométric properties of the periodic slow wave structure
and the space "above" the line which contains the electron beam. In
operation, the electron beam is modulated in time and space due to the
electron bunches passing above the line, so that interactions with the RF
wave can occur. The volume occupiedlby the electron bunches will therefore
present to the RF wave a time and space dependent dielectric constant. It
is therefore expected that the effective "hot" dielectric constant ¢ of the
slow wave structure will also depend on the time and space dependent space

charge in the beam, and is given by:
e = € (1 + 88p/05)
Ap = Ap(r,t) = time- and space dependent space charge
po = dc space charge
§ = geometric factor

If one assumes now that the depth of modulation Ap/pq is constant®, and that
the beam is propagating in z-direction, then Ap can be developed in a Fourier

series:
€ = TL1+C 8y exp jmug(t - z/ve)]

wg = drive frequency (of delayed wave)

Ve ® average electron velocity in z-direction

*In operation, the depth of modulation increases with z until saturation
occurs. The assumption, therefore, holds over most of the 1ine in overdrive
condition, and was used here only to simplify the discussion.

7

(2)

(3)




The effective dielectric constant is, therefore, modulated with all the
harmonics of the drive frequency. If one simplifies further by considering

only the main Fourier component:

e = T+ 8y cos up(t - 2/ve)]

“p T My

then it is seen that the effective dielectric constant is modulated with
a pump frequency fp = mfy. Even though the coefficient &y in Relation (4)
may be small compared to 1, the existence of waves at frequencies wp in or
close to the stopbands, 1n&uces resonances in each periodic section of the
periodic wave structure, which are more pronounced with wide stopbands, and
thus may introduce further modulation of the beam at this frequency.

As required, this model is based on a) the presence of the electron beam,
perferably at full power, b) the presence of a drive signal, preferably in
overdrive condition and c) the existence of a periodic structure with a

stopband.

(4)
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3.0 THE CFA DELAY LINE
3.1 The Physical Model

Figure 4 shows schematically the interaction space of a crossed field
amplifier (CFA). The slow wave structure is a meander line, the individual
fingers of which are supported by ceramic bars. The individual fingers are
connected to adjacent ones at opposite ends by an "empty waveguide" section
(not supported by ceramic bars). The electron beam above the 1ine is in-
jected from a cathode (not shown), and remains above the line by means of
a crossed dc electromagnetic field Eo (y-direction) and B, (x-direction)
whicﬁ forces the beam to move in z-direction with a velocity ve = Eo/B,.
Each individual finger of the slow wave structure is therefore perpendicular
to the velocity of the electrons. As a result, each individual finger n
will be subjected to a purely time dependent dielectric constant, shifted
from the adjacent ones by a phase constant phase twpP/ve, where P is the

true pitch (in z-direction) of the line:
€(n) = €[ 1+ &pcos wp(t - nP/ve)] (5)

If one now “stretches" the meander line, one obtains a waveguide (microstrip
line) which is periodically loaded by a dielectric of length £,» as schematically
shown in Figure 5. By doing this, one effectively neglects the coupling

between the bars, but the frequency position of the band gap is preserved.

Thus, the model of the CFA, as shown in Figure 5, is a periodically loaded
waveguide the dielectric sections of which have a time dependent effective

dielectric constant as given by relation (5).
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3.2 The Mathematical Model

To analyze the line as schematically shown in Figure 5, one must first
solve the wave propagation in a single section, the dielectric of which is
periodically modulated with a pump frequency fp. Once the solution has
been found for a single section, boundary conditions at the interfaces of
the dielectric with the vacuum section must be introduced. As a result, a
transfer matrix connecting the fields at the entrance of a single dielectric
section n to the fields at the entrance of the next dielectric section n+l
can be found. By multiplying this matrix by itself N times, where N is equal
to the number of individual fingers (approx. 96), the entire transfer matrix
of the 1ine can be found.

3.2.1 Mathematical Solution in a Dielectric Section

The equations governing the propagation of an RF wave in a waveguide are

given for a TEM mode by Maxwell's equations:
9E/3x = -paH/at oH/ax = +t3eE/at (6)

which can be combined by introducing D = €k, since € is only time dependent

in a single dielectric section
92D/ax2 = gna2D/at?

This equation is solved by the method of variable separation [D = D,(x)D,(t)]
by introducing a propagation constant 8

D}(x)/D,(x) = -g* = eud;(t)/D,(t) (7)
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which leads to the solution
D,(x) = a exp jBx + b exp - jBx
together with Hill's equation
D3(t) + (B*/eu)D,(t) = 0
Using the dc term of the dielectric constant as well as the maximum of the
Fourier component (& << 1)
1 1
P e -8 cos(wpt - ¢)]
one obtains Mathieu's equation by properly time shifting
D3(t) + B%v? (1 - & cos wpt)D,(t) = O
From Floquet's theorem it follows that one solution is given by
Fy(t) = e tp(t) P(t) = zC ed™pt

where the characteristic exponent v has to be determined. In general, but
not necessarily, F (-t) is also a solution of Mathieu's equation which is

linearly independent of F,(t). Thus in general
Redvtrc edmupt + pe-ivtre e-imupt (8)

is a complete solution for D,(t). Since |§| is small as compared to one, v
is generally real except for 28v = nwp, which will be excluded, since no wave

growing exponentially in time is observed.




From the solution obtained it follows that, for a single propagation
constant B(= w/v) an infinite number of waves with frequencies w, = w + nup
will propagate. The case w = nwplz must be treated separately.

3.2.2 Physical Interpretation and Simplification

3.2.2.1 Injection of a Single Wave

Let us assume now that a single wave of frequency f is injected into
the first section of the line. Due to the pump frequency, an infinite number
ofvwaves with frequencies f, = f ¢ nfp and with the same propagation constant
B8 will propagate in the dielectric section, and exit this section on both
sides. Consequently, the second dielectric section will "receive" and reflect
an infinite number of waves with frequencies f,. These waves will transmit
through the second dielectric section with both the initial propagation con-
stant B and their eigen-value g, = 2ufp/v.

In principle, therefore, one must track an infinite number of waves in-
jected from both sides of each dielectric section. However, since the amplitude
of the waves of frequency f, generated in the first section, reflected and
transmitted by this section decreases rapidly with increasing value of n, it
is therefore practical to consider only values n = 0 and n = t],

3.2.2.2 Injection of Two Waves: Active and Passive Coupling

Let us now consider the case of two waves with frequencies f, and f,
injected into the first section. In this first section then, waves with fre-

quencies f,t = f, ¢ fp and f,t = f, £ £ will be generated. If the two

P
primary frequencies f, and f, are such that (f, < f,):

f,ef, = f) (9)




IR

then these two waves will be actively coupled*. If, however
fz - fl = fp . (]0)

then, these waves are passively coupled. The differentiation between these

coupling modes is made because two waves

j(lht

¢,(x)e Jugt

and ¢,(x)e
which are passively coupled will be coupled directly
edlw, +wp)t . G2t

ej(wz - wp)t = ejwlt

while those actively coupled will be coupled indirectly through their con-

Jugate complex values
e, - wp)t | edwat (ejwzt)*
ej(‘”z = mp)t = e-jwlt = (ejmlt)*

3.2.2.3 Presence of Three Waves and Boundary Conditions

The case analyzed assumes three primary waves f,, f,, f, to propagate
in the CFA delay line, two of which are actively coupled and two of which are
passively coupled

£, -f, = f. (1)

P P

The simplification n = 0, .21 leads then to the presence of six waves within

* The mrniuo‘logy of active and passive coupling has been taken from Louisell's
work®). Although the present theory, described in detail in 1), 2) and 3) is
wore general since B is not necessarily equal to /¢ w/c, this terminology has
been kept here.

4) W.H. Louisell, Coupled Mode and Parametric Electronics, New York; Wiley (1960).
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the CFA lines, three waves propagating in each direction (forward and backward).

Each of these waves is actively or passively coupled to other waves, and is

reflected or transmitted at each of the boundaries between the dielectric and

the vacuum of each section. The mathematical computation, therefore, requires

the tracking of six waves, each wave being characterized by two coefficient§
(amplitude and phase). This requires 12 x 12 transmission matrices. The
computer program used requires as input conditions the geometry of the delay
line and the knowledge of three incoming waves (amplitudes AT(f,), AZ(f,),
AY(f,)). Furthermore, their relative phases ¢,, ¢, and ¢, must be given.

It is assumed that the line is perfectly matched at the input and output (no
reflections from the input and output connectors). Knowing the pumping phase

¢p required between two adjacent bars

the amplitudes AJ(f,), A (f,), and A (f ) reflected from the line at the input
as well as the amplitudes B;(fi) transmitted through N sections can be cal-

culated (see Figure 6).

3.3 Computer Results

The computer results obtained are summarized herein by discussing the
most pertinent results.
3.3.1 Results Obtained with CFA Line

The pump frequency fp was continuously varied between 10 and 15GHz, since
the bandgap of the unfolded meander line was calculated to be between 12.8 and
13.76Hz. The frequency f, was varied between the frequencies 200MHz and

(12)
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fp - 200MHz. The input conditions

+=

were used, and the pump phase ¢p continuously varied. The total output power
Py = (A;)2 + (B:)2 for each wave of frequency fj was monitored. It became
rapidly clear that P; > 10 could only be obtained when both f, was close to
fp. and fp. the pump frequency in the bandgap, leading to a large power gain
at f,. Varying the pump phase ¢p between bars lead to an increase of P,
above 100, and for ¢p = T, the result of Figure 7 was obtained. The following
two conclusions can be drawn:

1) Power gain is substantial at low values of f,(f, = o).

2) As the pump frequency fp is increased, the value f, for which

P, becomes maximum also increases

fomax = Tp - fimax = fp - %o

where f, is a fixed frequency which can be determined from
Figure 7 to be
fo = 12.8GHz

which is just the lower edge of the bandgap.
The input conditions were changed by increasing the value of A: from 1

to 500, leaving A: and A: equal to 1. No appreciable power gain was obtained.

However, increasing A: to 500, leaving A: = A: = ] led to a power gain for f,
of more than 80dB, see Figure 8. Here again, the frequency f, = 12.8GHz is
clearly detected. Note also that about 20dB gain is obtained at f, (high

frequency).

(13)
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3.4 Experimental Verification

The computer results obtained predicted that a very-low-frequency com-
ponent in the spectrum should be present when parametric oscillations are
occurring. The measurement of frequency components as low as a few megahertz
being impossible at the output of the tube (waveguide output), a coupler was
inserted at the input of an S-band tube, and the reflected spectrum measured.
Figure 9 shows the low-frequency spectrum reflected from the tube in over-
drive condition. A very pure signal is observed at about 50MHz when the tube
is operated close to the n/2 mode. The signal disappears when the overdrive
condition is removed, and the frequency of the spectral 1line is independent
of sole or cathode voltage, thus refuting the hypotheses that backward wave
oscillations are responsible for this low-frequency content.

Finally, Figure 10 shows the output spectra under the same conditions
(the upper left picture shows the spectrum at the output of the tube, the
reflected spectrum being shown in lower left figure). It is seen that the
spacing between spectral lines is about 60MHz in both the fundamental and
harmonic spectrum, strongly indicating cross modulation between the drive
signal and the harmonic signal with the low-frequency component. These lines
disappear when normal drive power (30W) is applied.

3.5 Reduced Width of Bandgap (Stopband)

The mathematical model described above shows that the parametric gain

decreases when the width of the stopband decreases. It can be shown that

excess capacitance or inductance at the end of each bar of the meander line

*The results shown in Figure 10 were obtained from another production tube
if compared to Figure 3.
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(finger connections) increases the width of the stopband. Using the sim-
plified model above, the value 6 for the phase shift per section can be

found from:

cos 6 = cos BL, + 229 sin 8%, (14)

6: phase shift per section
length of dielectric section

%,: length of connecting section
y: admittance of unloaded section £,

Zy: impedance of loaded section %,

The stopband occurs whenever the magnitude of cos 6 is greater than 1. The
first stopband occurs where ¢ approaches m, and cos 6 is less than -1. For
larger yZ,, the stopband is wider, and the parametric gain will be greater.

Some experimental cold-test models were build to determine the effect
of possible excess capacitance at the edges of the meander line. The first
models were meander lines on flat continuous substrates, with the corners
modified as shown in Figure 11. The effect upon the width of the stopband
of "clipping the corners" to reduce excess capacitance is shown in Figure 12.
The point was never reached at which removing more material would increase
the width of the stopband because of excess inductance.

3.6 _Conclusion and Discussion (CFA)

The model for parametric oscillations presented here fulfills the basic

requirements empirically defined for their existence, namely, the model requires

the presence of an electron beam, preferably at full power, and the presence

of a drive signal, preferably in overdrive conditions. The model then clearly
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defines a fixed frequency f, located at the lower edge of the bandgap of
the periodic slow wave structure, and predicts the simultaneous existence of
a very-low-frequency oscillation. The existence of this low frequency os-
cillation has been verified experimentally.

The presented model further predicts that power gain is obtained at
low frequencies (f,) and frequencies close to the bandgap (f:). This power
is obtained from the pump signal, and thus apparently from the second harmonic
of the drive signal. If it can be shown that power from the fundamental drive
signal can be converted to power in the second harmonic, from which power is
removed, then the power “"suckout" observed frequently would also be explained.
Therefore, the necessary further mathematical and experimental evaluation of
the present model can only be completed if the direct influence of the electron
beam is taken into account.

As described in the interim report, difficulties in computer programming
occurred during the first phase of this study. It is only after the introduction
of 3 coupled waves that gain could be obtained. '
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4.0 THE MODEL OF THE O-TYPE TRAVELING WAVE TUBE

4.1 The Physical Model

Figure 13 shows a typical rod supported helix which serves as slow wave
structure in many O-type traveling wave tubes. The helix, or spiral, is
supported inside a metallic cylinder by a certain number of rods, and an
electron beam of cylindrical symmetry moves with a velocity ve in z-direction
inside the helix. The electromagnetic wave, injected at one end of the helix,
mainly propagates between the helix and the cylinder (at ground), and there-
fore propagates in a "quasi" microstrip l1ine with the velocity nearly equal
to the velocity of light, c. To advance in z-direction by a distance P equal
to the pitch of the helix, the RF wave must travel a distance & = /{2nR)Z+P?
along the helix. Consequently, the wave advances in z-direction with a re-
duced velocity v = cP/%, and synchronism in z-direction between the beam and
the wave can be achieved by properly dimensioning the helix.

Considering Figure 13, it is seen that the wave propagates around the
helix with a velocity ¢ for a certain distance given by the separation between
the rods supporting the helix. As a result, therefore, the RF wave propagates
again in a microstrip which is periodically loaded by a dielectric. In
Figure 13, the RF wave penetrates and exit: a dielectric section three times
for each period of the helix.

Similar to the case of the CFA, the electron beam is RF modulated at a
frequency fq and contains all the harmonic frequencies mfy. Following the
discussion in Section 2.0 of this report, the wave at point z will propagate
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in a medium with an effective dielectric constant € given by*:

€ = € [1+ 26cos wp(t - 2/ve)]
op = mg

Since the wave is slowed down by the helix structure, Relation (15) can be

simulated by assuming a time and space dependent dielectric constant:
e = ¢ [1 +-26cos wp(t - 2'/Ve)]
Ve = Ve &/P

where z' is the travel distance along the helix.

Consequently, if one stretches the helix (as was done previously for
the meander 1ine), the RF wave propagates in a microstrip which:

a) is periodically loaded by a (small) dielectric section

b) and whose (effective) dielectric constant varies as given by

Equation (16).

This is schematically shown 1n'Figure 14.. Comparing Figure 14 with Figure 5,
it is seen that the effective dielectric constant of the helix is not only
time dependent, as it is in the CFA, but is also dependent on the space co-
ordinate x (which replaces z'). Although similar in principle, both models
are different 16 this respect, and require a different mathematical model.

4.2 The Mathematical Model

4.2.1 Maxwell's Equations

Assuming the wave to propagate in the waveguide shown in Figure 14 to
propagate in a TEM mode, the relevant Maxwell's equations become:

3E/3x = -~u 3H/ot; H/ax = +3 eE/ot

* The factor 2 in front of & was introduced to simplify the following equations.

30

(15)

(16)
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Figure 14. Physical model of the helix structure in 0-Type traveling
wave tubes (z' was replaced by the coordinate x for simplification).

B




where ¢ is the time (t) and space (x) dependent effective dielectric constant
for any section of the simulated helix waveguide structure.
For a given frequency w, the solution for constant ¢ is obviously given

by the “free" modes:
exp j (wt * Bx) B = w/en

representing waves with the propagation constant g and the phase velocity
Cc = ¢ (eusyi.

If the dielectric constant depends on time and space:
e = e[1+ 26cos(mpt - spx)]
Bp = wp/Ve = wP/ive = (nwgP)/(%ve)

then a single mode (w,B) will also contain components w + Twp . Using therefore

the Ansatz:
E = I E,expj(w+ nwp)t + c.c.
H = I Hyexpj(w+nap)t + c.c.

where c.c. stands for the complex conjugate values, it follows immediately

by insertion:

dEp/dx + jup uH, = 0 wp = w+ Nwp

dHp/dx + Jup €E, = -jun St {E,,_l e=38pX + £ 4y ejspx}

(17)

(18)

(19)

(20a)

(20b)
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where the conjugate values have disappeared since each of the equations can
be modified by taking its conjugate complex value. As discussed previously
for the CFA delay line, if a wave with a single frequency w is injected into
the simulated helix waveguide structure, then waves of all frequencies

wn = w + nwp Will be generated and will propagate within the first section

of the periodic waveguide. Contrary, however, to the CFA meander line, these
waves will not propagate with a common propagation constant 8. Consequently,
an accurate mathematical model must keep track of an infinite number of waves
in both directions. It is seen, however, from Equation (20b), that the waves
generated by the wave w decrease rapidly in amplitude as n is increased. It
is easily shown that the amplitude of the n-th mode related to w varies
proportionally to the n-th power of &, where § is small as compared to 1. It
is therefore meaningful to consider only the waves with n = 0 and n = #1.

4.2.2 Active Coupling

Let us consider now the case when two waves of frequencies F, and F, are
injected into the simulated helix waveguide structure. Let us further assume

that F, and F, are chosen in such a way that:
Fl + Fz = Fp

The injection of the wave of frequency w, will lead to the generation of waves
with frequency w, - Wy and w, + wp. The value of w, - wp being equal to -w,,
and neglecting the term with frequency w, + Wps it follows that the wave of

frequency w, is coupled to the wave of frequency w, through the complex value

33
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of the wave at frequency w,. Similarly, the wave of frequency w, will generate
waves of frequencies w, + Wp and w, - wp = ~wy. Thus, the waves of frequency
{ w, and w, are coupled through their complex conjugate values. Using

Equations (20), one obtains the 4 equations:

dE,/dx + juw,H, = 0 (22a)
dH,/dx + jaw,H, = -3éew,(E,* e 3fpX) ‘ (22b)
dE,/dx + juw,H, = 0 (22¢)

dH,/dx + ju,EE, = -jow,E(E," e IPPX) (22d)

The waves (E,, H,) and (E,, H,) of frequencies w1 and w, are coupled

through their complex conjugate values. It can be shown4) that the waves are
actively coupled in this case, meaning that power from (to) the pump can be

transferred to (from) the two waves.

4.2.3 Passive Coupling

] Let us again assume two waves of frequency F, and F, to be injected into
the simulated waveguide structure. Let us assume now that the two frequencies

i F, and F, fulfill the condition:
Fa-Fr = Fp (23)

The injection of the wave of frequency w, will lead to the generation of waves

with frequency w, - wp = 0, and w, + Wp- Similarly, the wave of frequency w,

will generate waves of frequency w, + wp = Wy and w, - Wp- If one neglects
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the components related to the frequencies w, + wp and w, - w,, the following

p
relations are obtained from Equations (20):

dE,/dx + juwH, = 0 (24a)
dHy/dx + JewE, = -joew,(E,eIPPX) " (24b)
dEs/dx + JuwgH, = O | (24c)
dHa/dx + Juyc€, =  -j6iuw,(E,e IBpX) (2ad)

It is seen in this case that the waves (E,, H,) and (E,, H,) of frequencies w,
and w, are coupled to each other through their corresponding amplitudes. It
can be shown4) that power may be transferred from one wave to the other, but
no power is delivered by the pump. Following Louise174), these waves are

referred to as being passively coupled.

4.2.4 Relationship to Normal Modes
Relations (24a) and (24b) can be combined by multiplying the second relation

by the impedance Z, = Ju/E of the waveguide. If one adds and subtracts the

resulting relation from Equation (24a), one obtains the relation:

Al: 4’11 = -] 'g"ﬁ"—; w, (¢3+ + ¢3-) eijX (25)

where we have introduced the normal modes:

En & ZH
¢nt = J—Eﬁge__n_ (26)
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and the differential operator

Ant =

t 3By (27)

gl

Equation (26) is the classical representation of normal modes. The power
carried by the mode is |¢n+|2 - |$,.12, indicating that ¢,, is a forward
mode, and ¢ is a backward mode. This can be easily seen from relation (25)

when neglecting coupling. One obtains then:

¢1+ ~ ethlx

which corresponds to waves with positive and negative phase velocity.

4.2.5 Parametric Amplification

Let us assume two waves of frequencies w, and w, to propagate in the

waveguide, and let us assume that they are actively coupled:

and that their uncoupled propagation constants are B, and B,, such that:
By = B, *+B,+8
The corresponding normalized coupled mode equations are then given by:

biy 01y = 'jg'/Ei Wy ¢z: e~JFPx (28)

*
Az- ¢2+ - J g"’eT Wz ¢1 eJBpX

fop

7 Ty




where the conjugate complex of the second equation was taken (A+* =45).
In normal mode nomenclature, the coupling coefficient <., from wave 1 to

wave 2 and the coupling c,; from wave 2 to wave 1 are given by:

'j%@ Wy

€12

Ca,

j%v’ﬁ w2

showing immediately that the Manley Rowe equations are fulfilled:

Cia car*
o, T Wy
Introducing:
' 1=
81 = 81 + 'EB
: 1.
B2' = B, + 3B

and using the Ansatz:
%5+ = Ay e~Jfy X j=1,2

one obtains by inserting into the system (28):

(g;- Jg—) A, = cuA,:




Solutions of this system of equations is easily obtained by assuming A,
and A,, to be proportional to exp Ax. The Efgen-value A must satisfy the

relation:

A = 2

7 §%8,8, - B?

N |~

showing that exponential growing waves are obtained for very small values of 8.
The energy gained by the waves, therefore, must be obtained from the pump.
For & = 0, the maximum gain is obtained, namely Ay = %-GJEIE:.

It is interesting to note that exponential gain with a backward wave

can be obtained. For § = -2, namely, relatfon (29) can give exponential

gain:

A= 28, /58,8, - 4

———
.

However, the maximum gain becomes very small.

4.2.6 Frequency Conversion
Let us now consider the case of two waves of frequency F, and F, which are

passively coupled:
Fg - F, = Fp

Let us further assume that these waves have uncoupled propagation constant g,
and B, such that:

Bg-Bx*a’Bp

(29)

(30)
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The corresponding normalized coupled mode equations are easily obtained from

equation (24), namely:
B4y = -J %@“’1 634 edBpX
-jB
Bagbse = -J %"Eﬁ Wy $,4 © 3Fpx

As previously shown, the Manley Rowe equations are fulfilled. This system of
equations can be solved by using the approach described in Section 4.2.5.

We will employ Laplace's transform to demonstrate a more general technique to
solve such a system of equations.

If 5j+(p) is the image of ¢4(x), it follows:

(p + 381) 614(P) = w;C dyu(p - 3Bp)

(p + 383) $3+(P) wsC ¢x+(P + ij)

From the second of these relations, the value ¢,,(p - jBP) can be found
by replacing p by p - jBp. It follows then that ¢, can be eliminated, leading

to an equation containing §,; alone. This relation can only be fulfilled if:
p? + Jp(B, + B, - Bp) - B,(B, - Bp) -~ c’uw,wy, = 0

leading to:

p = -J[B, +8, -8y t Y(8, - By +Bp)? - Ac’uwuw,] / 2

Since c? is negative®, it follows that p is always imaginary, so that no in-
stabilities (exponential growth) can occur. In this case, power is transferred
back and forth from the two distinct modes ¢,, and ¢,,.

*eis purely imaginary
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4.2.7 Boundary Conditions
Considering the periodically loaded waveguide shown in Figure 14, it is

seen that the waves alternately will propagate in an empty section of the wave-
guide followed by a "small1" section filled with a dielectric. At each of

the interfaces between the empty waveguide and the filled waveguide, boundary
conditions must be fulfilled. These boundary conditions require the matching

of the field components (E, H) for any given frequency. From thé definition (26)

of the normal modes, it follows that the two functions:
Ej = 2 4N (654 + ¢5-) (31)
Hj = 2(654 - 95-)/"Z

must be continuous at each of the boundaries considered. Note that j indexes
the frequency considered.

4.2.8 Conclusion

We have established the mathematical fundamentals of the model proposed for
the traveling wave tube in terms of the coupled mode theory. As in the case
of the CFA, we will consider waves with three different frequencies, which
means that we will have to track 6 waves, 3 in each direction. The boundary

conditions (31) must then apply at each of the many interfaces between the

empty and filled waveguide sections.
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l 4.3 Three Waves
4.3.1 Basic Relations
l We shall consider three waves of frequency F,, F, and F, to propagate
‘. in each direction. We shall assume that the waves 1 and 2 are actively
coupled, and that the waves 1 and 3 are passively coupled, i.e.:
l F, + F, = Fp : (32)
l F 3 - F 1 = Fp
i In view of the results obtained in Section 4.2 of this report, it is seen

that the "free" propagation constants B8i = wi”Eu fulfill equations similar
to Equation (32), namely:

B, + B, = 0 (33)

Ba - Bl = (l)pfe— = ép

where we have introduced Ep which is not necessarily equal to gp, the prop-
agation constant of the "dielectric wave", which propagates with a velocity
v determined mainly by the velocity of the electrons.

Considering the results obtained in Section 4.2, it is seen that a system

of 6 differentfal equations of the first degree must be solved:
Byy b1s = 338, (024" + 6,.7) exp -3Bpx (342)

;jc31(¢3+ + ¢3-) exp JBpx
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t jcB, (614 + 9,.) exp igpx (34b)

+ jeB, (6,4 + 0,.) exp -jBpx
832 = (d/dx) = jBs; c=48/2

The first step in analyzing the proposed model will be to solve this system

of equations.

4.3.2 The Dispersion Equation

The system of equations (34) can be Laplace transformed:
o(p) = S e PX ¢(x) dx
)

Six equations are then obtained, which contain the image functions 311, some
of which with arguments p + jgp. These image functions can easily be elim-
inated by shifting p to p £ jgp. Eliminating the functions 521 and ¢,

leads to two equations for ¢,,:

p+JB -« =K 51-!- (p) )
K p-J8, +«x ¢:- (p) -0

which can only Be fulfilled if the determinant of the 2 x 2 matrix vanishes.
This leads to particular values of p = -jB, which must fulfill the dispersion
equation:

-

Bz -8 2 5 628 2 Bzz + B,z . (35)
! '] (8-8p)? - B,? (8+8p)* - 8,°
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If § = 0, the "free" soihtions B ¢+ B, are obtained. If § # 0, then relation (35)
represents a 6th order equation leading to 6 different solutions. This could
be predicted since we started with a system of 6 differential equations (34).
In general, 62 is very small as compared to 1. Unless at least one term
of the denominators of the right hand in (35) nearly vanishes, the solutions
of equation (35) are given approximately by B ~ +B,. "Strong" deviations from
these solutions can only occur if and only if one or both of the following

relations is satisfied:

H
oW
t 4
+
w
w
124
o0
<

Remembering that B; are positive values, and considering relation (33), it
follows that interaction occurs when either or both the following relations

are satisfied:

The right hand side of equation (35) will be small as compared to 1 (pro-
portional to 62) if B is set approximately equal to -8,. Consequently, one
can deduce that the backward wave 1 will never be “strongly" coupled to the
other waves, and, as such, can be assumed to propagate "free" with the un-

perturbed propagation constant -8,. Similarly, one can deduce that the

!




backward waves 2 and 3 will also propagate "freely" with their respective
propagation constants -8, and -8, respectively. Thus, one can .ssume the !

backward waves to propagate as:
¢j. ~ exp +jBix b

If one neglects now the respective coupling terms related to backward waves
in the system of equations (34), one finds a dispersion equation of the third

order only, namely:

2
s = Sp | —Bo_ . _B (36)

0B = B - By A8, = Bp - Bp

This relation merits some discussion. Consider the following cases:

(a) Neglect wave 3 (B, = 0)

The solution corresponds then to the solution obtained earlier for

actively coupled waves 1 and 2:

88 = (ABp/2) * JY8%8,B, - 88,2 /2

Under synchronism (ABp = 0), maximum gain for the exponential waves are obtained.
(b) Neglect wave 2 (8, = 0)

The solution corresponds to the squiion obtained earlier for pas-

sively coupled waves 1 and 3:

A8 = -(88p/2) t vAp? + §%8,8, / 2

In this case, no growing waves afe obtained.




(c) Synchronism (8, = Bp)

In this case, it is easily seen that the solutions become:

B, and 8, * s; s = (6/2)7B,(8, - 8,) (37)

Since it can be shown that 8, - 8, = 28,, no growing waves can be expected.

In view of the growing waves one obtains between actively coup1gd waves,

this result seems surprising. However, the passively coupled mode dominates
the actively coupled mode, and power is essentially converted among the various
waves.

(d) General case (assynchronism)

In the general case of assnychronism (ABp # 0), it can be shown that
growing waves will exist if the synchronism factor 8Bp 1s s1ightly positive
or negative. Under certain conditions, discussed in Appendix 1, the imaginary

part of 8 becomes:
Im(B) = * .24 884 (1.6)
(Bg/8, > 1)

In general, however, one must solve the dispersion equation (36) to obtain

the exact values of the solutions By-




4.3.3 The General:Solution

Representing the solutions of the dispersion equation (36) to be
AB = Sl, 52’ Sa

then the most general solution for the three waves is obtained by using the

ansatz:

3
¢1+ = (Z An e'js“x ) e-jelx
1

Inserting this value into relations (34b) and (34c) and keeping in mind that
coupling from and to backward waves is neglected, leads to:

3 -jsnx
by = e8, [z M€ oxp j(8, + a8y
' ABp - sp

3 An e'js"x )

b3y = CBy ({' 28, + Sp }exP -3(By + ABp)x

where the coefficients A, are determined by boundary conditions. For example,
the knowledge of ¢44+(0) for all three waves (i = 1, 2, 3) at x = 0 uniquely
determines Ap.

4.3.4 Conclusion

The most general solution has been determined when 3 waves of frequencies
F,» F, and F, are propagating in each direction in a given section of a wave-
guide. Two of these waves were assumed to be actively coupled, and two of

these waves were assumed to be passively coupled. The simultaneous presence

(38a)

(38b)

(38c)




of all three waves does not lead to exponential growing waves when perfect
synchronism is assumed. A certain value of the asynchronism factor Kﬁb. how-
ever, leads to exvonential growing waves. The sensitivity of the synchronism
factor ABﬁ on the exponential growth of the waves may explain the extreme
sensitivity of the "power suck-out" to external and internal tube parameters,
such as beam voltage and assymmetry in the placement of the helix supporting
rods.

A generalized theory with these three waves requires solving a dispersion
equation of the six-th order. Simplification results when no coupling from
and to the backward waves is assumed. The third order dispersion equation leads
to three solutions, two of which can be complex conjugate. The general solution
(38) must then be applied to each section of the waveguide, and proper boundary
condition introduced. This requires again a complex computer code, and the
results will not be explicative from the physics point of view. Since two
actively coupled waves lead to exponential growing waves, we will apply in
the next section the boundary conditions to waves F, and F, which are actively

coupled (Section 5.0).
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5.0 PARAMETRIC TWT AMPLIFICATION

5.1 General
In order to understand the physics involved in both the cases of CFA and

the TWT, we will consider in this section two actively coupled waves such that:

w, + w, = wp

B, + 8, = Bp

It follows then from the discussion in Section 4.0 that the general solution

of the system containing 4 waves (2 in each direction) is given by:

o4 = (2, € + a, ™) exp -j8,x
- = by exp iB;x
bpy = jce—: (a, e - a, e ) exp +B8,x
*
¢,. = b, exp -jB,x
s = C VBIBZ %Velez

where a; and b; are constants of integration.

'9t us define the vector:

-> *
Vo= (614 1o Gops 0,.)

It is then easy to define the transformation matrices for a single section

of the waveguide.

(39)

(40a)

(40b)

(40c)

(40d)

(41)

)
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5.2 The Transformation Matrices

5.2.1 Transformation Through a Single Empty Wavequide Section of Length 2;

Figure 14 shows the schematic of the waveguide to be analyzed. Let us
assume that the "entrance" of a single empty waveguide section is located at
x = 0, so that the "exit"” of the empty waveguide section is located at x = £,,

see Figure 15.

If the value of the vector $ at x = 0 is known (see definition 41), then
the value of y(2,) in the empty waveguide can be easily determined by using the
relations (40). One obtains a transformation matrix (L,) which transforms the

l vector ¢ such that:

$(L) = (L)w(0) (42)

where L, is defined in Figure 16. This matrix can be decomposed into a2 matrix

(L,,) representing the transmission in the absence of pumping (s = 0) and a

coupling matrix (5,) which describes the coupling through the pump frequency wp.
5.2.2 Interface Boundary Condition

The boundary conditions (31) must now be applied at the interface between
the vacuum and the dielectric (see Figure 15). The vectors 3 at the position
X = £; - A and at the position x = £, - A (A » ¢) can be related to each other

by a transformation matric (B,):

V(2 - A) = (Bg) ¥ (2, + ) (43)

where (By) is defined in Figure 17. We are now in the position to relate directly
P(2,) in the dielectric to the initial vector ¥(0) in the vacuum by the trans-

formation:

WL, = (By™Y) (L) ¥ (0)

Note that B, is a transformation matrix which does not depend on the pump wave Wp« }
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Figure 16. The transformation matrix (L,) which can be represented by the
product (L,) = (Ly,)(s,).
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Figure 17. The 4 x 4 boundary transformation matrix (Bo) decomposed
into 2 x 2 matrices.
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5.2.3 Transformation Through the Dielectric Section

The behavior of the solution in the dielectric portion is similar to the
behavior of the solutions in the vacuum section if one replaces 84 by ki,
where ki = Bij//eq> €4 being the dielectric constant of the dielectric material.
To be exact, the solution of the dispersion equations will be is,, where §,
is either real or imaginary, depending on the synchronization factor. There-
fore, the transformation matrix through the dielectric section (Lz) will be
similar to the transformation matrix (L,). We will assume that £, is so

small, that the coupling matrix (S,) is nearly equal to unity:
B, +2,) = (L) ¥ (e) (44)
(L)) = (Lap) (S2) = (Lyy)

where the transformation matrix (L,,) is shown in Figure 18 (and should be

compared to Figure 16).

5.2.4 The Transformation Through a Complete Single Section

If one applies a boundary condition transformation similar to the one
given by relation (43), one finds that the transformation one has to apply
js just given by Bo. Consequently, it follows that $(21 +82) = $(p) at the
entrance of a vacuum section can be related to the vector $(0) of the fol-

lowing section through a transformation matrix given by:

$P) = (By) (Lag) (S2) (By™) (Lie) (5,) ¥ (0) (45)
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Figure 18. The 4 x 4 transmission matrix (L,) = (L,,) (s,) = (Ly,)
through the dielectric.
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which, as discussed earlier, can be simplified by setting (S,) = (I):
Bp) = (Tp) (S,) W(0) (46)

(To) = (Bo) (L20) (By™?) (Ly)

where (T,) is the unperturbed transformation matrix one obtains when coupling
’ (pumping) between the waves is neglected.
5.2.5 The Complete Transformation Matrix

! It 1s clear that if N individual sections are present, then one can
i relate the input vector 3(0) to the helix to the output vector J(Np) of

the helix by successive transformations (46) to obtain:

Bp) = (1,8 (0) (47)

We note here that (T,) is the inperturbed transformation matrix, and that
(To) is multiplied by a coupling matrix (S:) which is nearly equal to the
unit matrix s2, << 1. It is therefore of interest to discuss the matrix To
before solving relation (47).

5.3 _The Unperturbed Matrices

In the absence of the coupling, i.e., (S,)=I, both waves of frequencies w,

and w, will propagate uncoupled through the periodic waveguide structure. Con-

sequently, the 4 x 4 matrix (T,) can be reduced to 2 x 2 matrices Z({) such that:

- 21) 0 )
° 0 2(2)

. ——— - ey
- . .
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where Z(1) represents the transformation of a single wave of frequency wj.
The matrix Z can be calculated rather easily, and one finds the matrix shown 1
in Figure 19. This matrix fulfills the condition Det Z = |Z| = 1, and, fol-

lowing Cowley Hamilton's relation, can be represented by:

Z = Icos® + Ksine (49)

where 6 is defined by:

cos 6§ = %-(le + Z52) = Real Z,,

= cos BL, cos k%, - 1+ e gip 8L, sin ke, (50)
2v/e
and K given by:
Z;, - 2,

2 2 zlz

Ksine = (s1)
221 <Ly -1y,
2

It can be shown rather easily that:
K2 = -1; Z" = 1 cos ne + K sin no (52)

where I is the unit matrix.
Relation (51) describes the w-g diagram. If the right hand side of
Equation (50) is larger than or equal to 1, then 6 becomes imaginary, and no

propagation can occur in a waveguide made up of many individual pertodic sections.

;
i




If 6 is real, then:relation (51) describes Floquet's theorem: the waves
suffer a net phase shift 6 per single section.
Of interest for later use are the eigenvalues A and the eigenvectors %

of the matrix Z. It is easily seen that the relation:
Zgh = Xn zh

can be verified for:

2z - -
Ey,2 = (-Kyzs Kiy +J)

-
showing that each wave €1,2 is phase shifted through the N sections of the
helix:

+jné 2

El’z (out) = e 51,2 (in)

Note that the eigenvalues fulfill the second order equation:

A2-21cos0+1 = 0

It follows therefore that the unperturbed matrix T, in equation (48) has
the 4 efgenvalues X,, X, = X,*, X,, X, = i,*, where A, , are the eigenvalues
associated with the matrix Z(1), f.e., the frequency w,, and i,’. are the
eigenvalues associated with the matrix Z(2), i.e., the frequency w,. The

eigenvectors of the matrix T, are then given by:

51,2 = [- Kn(‘): Kl!(]);\io o, 0]

™t
.

» [ol 0' 'Klz(z)o K!!(‘);J]

etje‘; . oH0

Asys

(83)

(54)

(55)




5.4 General Method.of Solution
The general method which will be applied to solve relation (47) will be

as follows:

1) determine the 4 eigenvalues A{ of the matrix T = TyS,

2) determine the 4 eigenvectors oj of the matrix T = ToS,
3) decompose the input vecotr $(0) into 4 efgenvectors % L' En
4) apply the multiplication rule: :
™ 4(0) = oy oy %
5) compare the resulting vector to the vector $(Np)
When applying the multiplication rule, let us assume that A, = A\q(1 + ¢,),
then:

- N 5 N N~
, T w(0) = Z oy An (1 +€5)" 0
so that gain can be expected whenever |1 + ¢,| > 1, since:
(1 + e)N = exp [N2n (1 +¢e,)] = exp Ney

/One can therefore expect a power gain G whenever the real part of ¢, is positive.
The gain G will then be given by:

Gp = 8.7 N Real ¢, ~ (56)
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5.5 Results and Discussion
It can be shown tﬁat the 4 eigenvalues A, of thé transformation matrix must H
fulfil a 4th order equation which is discussed in Appendix II. This 4th order
equation with complex coefficients has been numerically solved by computer.
With N = 100, small gain of a few hundreds to a few tenths of a dB were generally F
obtained” except in the vicinity of 81,2 = kn. In this case, a double or quadruple
solution was expected, and inaccuracies in the computer code were evident. How-
ever, gains in excess of 100 dB were calculated. .
iy A general discussion on the eigenvalues is made in Appendix 1I. Of
primary importance are the two parameters 6, and 6,, which describe the actual
phase shift of the waves F; and F, through a single waveguide section. Dif-

ferent cases are considered.

Case I - General Case: kr # 6, # 0, # nw

[ - ——

The gain obtained in this general case is relatively small, being pro-
portional to the square of the amplitude of the dielectric modulation (i.e. ~ §2).

R ]

Since § is small compared to 1, no appreciable gain is obtained. This was
verified by computer code. '

Case II - The = modes (6; or 6, = kw, but 6, # 6,)

It is shown in Appendix II that if one of the waves is a mode, then a

- o
b
-

gain proportional to & is obtained. This leads to a gain of a few dB's, as
verified by the computer.
i Case III - Dual and Equal w modes (kr = 6, = 6, + 2nw)

_Maximum gain is obtatined when both waves are 7 (or nw) modes. The gain here
is found to be proportional to the square root of § and, with the values & = 10°2,

- € =5, L2/2 = 10%, gains in excess of 100 dB's were calculated.

* Computer evaluation was made by using & = 1072, ¢ = 5, £,/€;, = 10%




As shown in Appendix II, the relevant values of €, [a, = Az(1 + €)]

are approximately given by:

= € - ] . ‘
et = £ 8 sinh(8VB1B; £1/%2)A (57)
A2 = (sing,L, sing,2,)

Relation (57) has been confirmed within 20% error by computer calculations.
¥2

Case IV - Dual and Opposite m modes: (kv = 6, = 6, + (2n + 1)w)

It is surprising to find the gain to be proportional to §

The gain one obtains in this case is porportional to &, and corresponds
to the single 7 mode case. This case {is important, however, since it can directly
be related to the results obtained for the CFA,

In the case of the CFA, maximum gain was obtained when F, was first at
the lower edge of the first band gap (6, = 7). A very low frequency oscillation
(F, = 50 MHz) was then determined, This corresponds to 8, = 0.

It can therefore be expected that even higher gains can be obtained in
the case of the CFA is both 6, and 6, are set equal to kr modes (0, = knw,
0, = 6, + 2nm). This case was not analyzed as yet: the approximations made for

the CFA evaluation do not allow to set F, = F,,

'

_




6.0 CONCLUSIONS AND FUTURE WORK

The general modeI..proposed by Northrop and supported by AFOSR, for the
occurence of parametric oscillations in high power microwave amplifiers has
been applied to both injected beam crossed field amplifiers and traveling
wave tubes. The results obtained clearly indicate that the model can describe
the effects of one class of spurious oscillations observed experimentally.

In the case of the CFA, a constant frequency located within the first
band gap has been identified. The occurence of the spurious oscillation has
been linked to a very low frequency oscillation. This low frequency os-
cillations has been observed experimentally, and was shown not to be correlated
to backward wave oscillation. Experimentally the band gap of meander 1ines
has been reduced by properly matching the finger end connections. The results
have been published in 2 publications2*?. _

The model of the TWT was simplified in order to obtain a better under-
standing of these oscillations. The occurrence of simultaneous m modes
leads to gains of the order of 100 dB's or more. The analysis carried out in
this report implicitely assumes perfect synchronism (8, + 8, = sp). In
general, this 1s not the case., Appendix III shows the dispersion equation for
the assynchronism, A detailed analysis should be made using the proper dis-
persion equation,

A basis for the occurence of parametric oscillations has been established.
If it can be shown that power from the fundamental drive signal can be converted
to power in the second or higher order harmonic from which power is removed to
build up the parametric waves, then the "power suck-out" observed frequently
would be explained. This subject should be investigated, together with a
correlation between experimental data and the theoretical predictions made in

this report.
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APPENDIX 1

The Dispersion Equation

The dispersion equation (38) can be written in normalized form:

x}+3px+2qg = 0 (1.1)

o
I

-‘5 [y* +1}; q=yz

AB(v2/68,); y

x
[}

V2MBp/8B,;  z = Bq/28,

The relevant parameter to discuss is:
k = p+q = -% (y? +1)° + y222 (1.2)

If « is positive, then one real and 2 conjugate complex solutions exist.
Let us therefore discuss the possibility of conjugate complex solutions.

In order to obtain growing waves, one must fulfill the condition:

y:+1 : 2,2
— < y2z (1.3)

In order to discuss this condition, let us discuss the value for x. For y = 0,
k is equal to -1/27, and is negative. The maxima (and minima) of « as a function

of y are determined by the condition:

a_K-o

oy
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which leads to the following conditions:

(a) y=0 k<0
(b) y2 + 1 = %32

Condition (a) is without direct interest, since x < 0. Condition (b) requires

y? to be positive, and therefore:
y? = 32-1>0

Inserting this value for y into (I.2) leads to the condition:
kp = 22 (2z - 1)

which is always fulfilled since 2z = §q/8, and the waves are actively coupled.
It follows therefore that exponential growing waves will always exist if the

"synchronism" factor y is set equal to

y = +V3z-‘l

and it is clear that a certain "bandwidth" Asp exists around this value
in which growing waves exist. If x is positive, then one usually defines

the two parameters u and v given by:

ud = -q+ % v} = -q-"

and the 3 solutions are then given by:

+ ')
X; ® U+VE Xy 4 = - icv, j—%(u - v)

2

(1.4)

(1.5)
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Maximum gain is therefore obtained when « is maximally positive, i.e., for

K = kp- An estimate for the maximum gain can be obtained when x = k.

2[V3z -1 + Y2z - 1]

u

z[3z -1 - Y2z - 1]

<
w
]

which shows that z must be chosen as Targe as possible. Since z = Bqls,,
it is seen that B, must be chosen as small as possible. For large values

of z, one obtains:

n

ul zvz (V3 + v2) (1.47z)°

14

114

v = z/2 (73 - V2) (.682)*

and the maximum gain will become:

"%_(u-v) = '%.z(1.47-.63) - .68z
= .34 Bq/8,

In terms of A8, it follows then that:

In Gnax = 8(.34 Bo/e)EL = 2488

(1.6)
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APPENDIX I1
Eigenvalues of (T,S,)

It can be shown rather easily that the 4 eigenvalues A4 of the transformation
matrix (T,S,) have to fulfil the following 4th order equation:

[a% - A(Z,,(1)coshx + Z,,(1)) + coshx] -
[a2 - A(Z,%(2)coshx + Z,5(2)) + coshx] +
- sinhx? [1 - AZ,,(1)1 01 -AZ,7(2)] = 0O
with x = s,
If one assumes now that cosh s%, << 1, one finds easily:
(8 = A (A = A)(8 - A, XA - 2,) - sinhx2[1 - AZ,,(1)I01 - AZ,3(2)] = 0

where the Aj are the eigenvaleus of the unperturbed transmission Matrix T,,

namely:
Ay = exp 6,3 A, = exp -§6,
As = exp j6y; A, = exp -J62

Physically, A, and A, are given by the phase shift 6, a wave of frequency

w, will suffer through one single but complete section of the periodic waveguide.

Similarly, 6, is the phase shift a wave of frequency w, suffers through one

single but complete section of the periodic waveguide.

(A2.1)

(A2.2)

(A2.3)




We expect the eigenvalues Ay of the dispersion equation (A2.1) to be close to
the eigenvalues Aj of fﬁe unperturbed matrix, Therefore, we will use the

ansatz:

ai = Aj(1 + €j) (A2.4)
The terms 1 - AjZ,, in relation (A2.2) can then be simplified:

1- AjZ,l x 1 -3n

and one finds:

1-22,,(1) = - ‘5'(11 - X)) (1 - 3K;,(1))
A
T-2%Zu(l) = (4 -2) (04 5Kn(1))
(A2.5)
* s
1- 13211(2) = - -E'(Ag - 4,) (1 + jk;,(2))
* Ay
1 - AZ,(2) 'E'(Xg - ) (- 3Ky, (2))
These relations show the importance of the value of K,,, i.e., Z,,. The
real part of Z,; was given in relation (50), namely:
Real Z,, = Real Z,, = cos @ (A2.6)

cos 6 = cosBl, coskt, - o sinfe, sinke,
o = (14+¢)2/e

¢ = dielectric constant
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Similarly, the imaginary part of Z,, can be evaluated:
Ilell- -ImZz,, = -3K,, sine (A2.7)
= - (cosB, sinkf, + o singl; coskf,)
Furthermore, since the determinant of the matrix (Z) is equal to 1:
231255 - 2132253 = 1

One finds easily with Z,;, = 22: = cos® + K,;,sin®

2

€ -
-(Kgl + ]) S'lnze = 212221 = -(—-—‘el—) sinZle
resulting in the relation:
K = s (Lt (e-1)? sin’gts (A2.8)

4c sin2e
e = dielectric constant

Clearly, relations (A2.8) and (A2.7) show that K;, may become infinite as o
approaches km, and that the product

ls-k..

(0 + §K11) = J sine (1 + jK;;)

approaches the value - sind K,, as 6 + kn. For 0 = kv, the value stays generally
finite if 82, # km.
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We will now differentiate between cases.
Case I: Af # g (i#J)

i In this case, the eigenvalues of the unperturbed matrix are all different
from each other. Using (A2.4) and (A2.5) one finds:

’ 1 = 21Z,:1%(2)

€ = - stnh2x [] - jK’1(1)] 2()\1 - A’)(X‘ - X.)
i
. 1 - Azle*(z)
: €, = = sinh®x [1 + §K;, (1)] 2(2, = Ag)(xz = Ay)
j 2
(A2.9)
1 = A2y, (1)
3 1
%
| e, = - sinhx [1 - 3K, (2)] 1 = A251:(1)

2(xy - 2,)(Ay - 22)

It is seen that ¢ is proportional to the square of the depth of modulation 6
(sinhx = x = &/BB, 2,/2), and as such, relatively low gain will be obtained.
‘ It is interesting to note that K,, can become infinite for sin 6 ~ 0. In this
case, however, A, and A\, are nearly equal, so that the case of the w modes
must be considered.

Case II: The singular w mode

Let us assume that 6, is nearly equal to km, and that 6, # kr. To solve

the dispersion equation, let us set:

A = A (1+6,)) = cose, = %l

Is,] << 1, Ay £ )y




Let us solve again the dispersion equation (A2.2) with the ansatz:
A = (1 +¢e)

The first term fn equation (A2.2) becomes equal to:
22 ele - §2)(0 = 2) (A - A)

The second term of the same equation can be evaluated by using the following

relations: (§ - 0)

—

a0 ) 2,,(0) = (1 +e) [ - 42,00 -6

(1 +e) [ Moo 0- jxum)} - &

- X;KII(I)S'"IBI - €y = hj)\,lmlu('l)

Consequently, with A, = *1, one obtains:

1 - 7,,(2)

j sinh2x
1 3 cos6,

ele - §,) =

Imz,,(1) (A2.10)

1 ¥ cosé,

. -3 ;"2""_* (tmz,,m) [ﬂ + M]

For § - 0, it follows that € is proportional to sinhx. It is interesting to note,
however, that the right hand of equation (A2.7) can become infinitely large 1f
the denominator 1 ¥ cosé, vanishes. This occurs for cos6, = 2nk if 6; = 2vk',

e e A e A R ¢ e R
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or for cos6, = (2k + 1)w 1f 8, = (2k' + 1)n. Therefore, it is expected that
a maximum value of € will be obtained when 0, »~ 0, + 2km and 6, = nv. We
will consider in the following the dual = modes.

Case II11: The dual w modes

The dual 7 modes will be characterized by:
0; = 0, + 2kw = nw
To solve the equation (A2.2), we will use the ansatz:
A = (1 +¢g)
A= A0 +8) 122
Similar to the discussion above, one finds for the left term in equation (A2.2):
A ey - 852)(e; - §3)(ey - 64)

and the right term of the same equation can be evaluated by using the two
relations.

1-12Z,,(1) = -3 (ImZ,,(1))
1- 1(21:(2)) = Jnaimiy,(2)
It follows therefore that the equation (A2.2) becomes:

ei(er - Sa)(es - Sa)(es - 8,) = sinohix InZ,,(1) In(Z,,(2))  (A2.M1)

which results for perfect synchronism (6, = 6, = kn):

e, = tsinhx "[Im 2, (1) Inz,,(2)] - (A2.12
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From the condition that the determinant of the matrix (Z) is equal to 1, namely:
(Real(Z,,))* + (Im(2,,))? - 2,,Z,, = 1 ]
- and that Real (Z,,) = #1 at 6 = kn, it follows that:

m(2,,) = V7,7, = +&=Lging,
2/

and:

2 - ...E']

Y
sinhx [tsing. L. sinB,%,] A2.13
vy 1% 2% ( )

Relation (A2.13) shows that €, is proportional to the square root of sinhx ~ x,

i showing that large gains can be obtained.




APPENDIX III

Non-Synchroneous Case

Equation (39) in Section 5.0 required the synchronism of the two waves,

i.e., the wavevector Bp of the pump wave was set equal to the sum of the two
wavevectors 8, and B,. Physically, this means that the waves are in complete
synchronism within the empty waveguide sections. However, under these con-
ditions, the pump wave will advance during the passage of the waves F, and

F, through the dielectric section. Therefore, the second relation of (39)

is not necessarily fulfilled. Instead, one must write:

B, + B, + AB (A3.1)

Bp

Following the approval shown in Section 5.0, one finds then that the value
of s must be replaced by:

s' = -lz-fs’s,_sz - Ag? (A3.2)

as derived in Section 4.0. Furthermore, it is easily shown that the coupling

matrix (s;) in relation (46) must be replaced by a matrix (s,') given by:

&, 0 a, 0

s, = 0 ] 0* 0 (A3.3)
s 0 ay 0
0 0 0 ]

(e
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with

a, [coshs'e, + § %f;sinhs'z,] exp - § Ag-z,

a, = j gg% sinhs'%, exp - j ég 2, (A4.4)

]
w
!

-3 %gf sinhs'2, exp j Ag-zl

Consequently, the 4th order equation for the Eigenvalues (see Equation A2.1)

will become:
(4% - A(Z,,(1) &, + Z,,(1)) +4q,] - (A3.5)

[82 - AZ,1(2) a1 + Z,0(1)) + i) +

[]
o

- a0y [1 - 82,01 01 - 42, %(2)]

7

Note that:

522;?2 sinh?s's, (A3.6)

Q
N

[+
™

n

Let us assume now that a; = a,* = 1. One obtains then the equation:

(8= 2008 - 2008 = Aad(a = A) = SBaBe g g1y,

« [V - Az, ()08 - a2,%(2)]

b v e e ) i
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The existence of this low frequency osigllation has been verified
The presented model further predicts that power gain is obtaine
at low frequencies (f sub 1) and frequencies close to the bandgap (f sub 2). -
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F This power is obtained from the pump signal, and thus apparently from the secon
harmonic of the drive signal. The mathematical fundamentals of the model proposgd
for the traveling wave tube in terms of the coupled,mode theory was established.
As in the case of the CFA, waves with three different frequencies were considere
which means that 6 waves will have to be tracked, 3 in each direction. The
boundary conditions must then apply at each of the many interfaces between the
empty and filled waveguide sections. 1
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